Copied to
clipboard

G = C23.22D28order 448 = 26·7

1st non-split extension by C23 of D28 acting via D28/C28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.22D28, (C2×C56)⋊10C4, (C2×C8)⋊6Dic7, C56.73(C2×C4), C561C429C2, C8⋊Dic729C2, C28.47(C4⋊C4), C28.75(C2×Q8), (C2×C28).61Q8, (C2×C4).169D28, (C2×C8).307D14, (C2×C28).401D4, C8.17(C2×Dic7), (C22×C8).11D7, C14.15(C4○D8), (C22×C56).17C2, C4.23(C4⋊Dic7), (C2×C4).50Dic14, C4.41(C2×Dic14), C22.52(C2×D28), C2.4(D567C2), C28.171(C22×C4), (C2×C56).392C22, (C2×C28).765C23, (C22×C4).425D14, (C22×C14).137D4, C74(C23.25D4), C4.25(C22×Dic7), C4⋊Dic7.281C22, C22.13(C4⋊Dic7), (C22×C28).539C22, C23.21D14.5C2, C14.46(C2×C4⋊C4), C2.12(C2×C4⋊Dic7), (C2×C14).51(C4⋊C4), (C2×C28).306(C2×C4), (C2×C14).155(C2×D4), (C2×C4).83(C2×Dic7), (C2×C4).712(C22×D7), SmallGroup(448,640)

Series: Derived Chief Lower central Upper central

C1C28 — C23.22D28
C1C7C14C2×C14C2×C28C4⋊Dic7C23.21D14 — C23.22D28
C7C14C28 — C23.22D28
C1C2×C4C22×C4C22×C8

Generators and relations for C23.22D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d27 >

Subgroups: 420 in 114 conjugacy classes, 71 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic7, C28, C28, C2×C14, C2×C14, C2×C14, C4.Q8, C2.D8, C42⋊C2, C22×C8, C56, C2×Dic7, C2×C28, C2×C28, C22×C14, C23.25D4, C4×Dic7, C4⋊Dic7, C23.D7, C2×C56, C2×C56, C22×C28, C8⋊Dic7, C561C4, C23.21D14, C22×C56, C23.22D28
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic7, D14, C2×C4⋊C4, C4○D8, Dic14, D28, C2×Dic7, C22×D7, C23.25D4, C4⋊Dic7, C2×Dic14, C2×D28, C22×Dic7, D567C2, C2×C4⋊Dic7, C23.22D28

Smallest permutation representation of C23.22D28
On 224 points
Generators in S224
(1 191)(2 192)(3 193)(4 194)(5 195)(6 196)(7 197)(8 198)(9 199)(10 200)(11 201)(12 202)(13 203)(14 204)(15 205)(16 206)(17 207)(18 208)(19 209)(20 210)(21 211)(22 212)(23 213)(24 214)(25 215)(26 216)(27 217)(28 218)(29 219)(30 220)(31 221)(32 222)(33 223)(34 224)(35 169)(36 170)(37 171)(38 172)(39 173)(40 174)(41 175)(42 176)(43 177)(44 178)(45 179)(46 180)(47 181)(48 182)(49 183)(50 184)(51 185)(52 186)(53 187)(54 188)(55 189)(56 190)(57 139)(58 140)(59 141)(60 142)(61 143)(62 144)(63 145)(64 146)(65 147)(66 148)(67 149)(68 150)(69 151)(70 152)(71 153)(72 154)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 161)(80 162)(81 163)(82 164)(83 165)(84 166)(85 167)(86 168)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 121)(96 122)(97 123)(98 124)(99 125)(100 126)(101 127)(102 128)(103 129)(104 130)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)
(1 191)(2 192)(3 193)(4 194)(5 195)(6 196)(7 197)(8 198)(9 199)(10 200)(11 201)(12 202)(13 203)(14 204)(15 205)(16 206)(17 207)(18 208)(19 209)(20 210)(21 211)(22 212)(23 213)(24 214)(25 215)(26 216)(27 217)(28 218)(29 219)(30 220)(31 221)(32 222)(33 223)(34 224)(35 169)(36 170)(37 171)(38 172)(39 173)(40 174)(41 175)(42 176)(43 177)(44 178)(45 179)(46 180)(47 181)(48 182)(49 183)(50 184)(51 185)(52 186)(53 187)(54 188)(55 189)(56 190)(57 167)(58 168)(59 113)(60 114)(61 115)(62 116)(63 117)(64 118)(65 119)(66 120)(67 121)(68 122)(69 123)(70 124)(71 125)(72 126)(73 127)(74 128)(75 129)(76 130)(77 131)(78 132)(79 133)(80 134)(81 135)(82 136)(83 137)(84 138)(85 139)(86 140)(87 141)(88 142)(89 143)(90 144)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(97 151)(98 152)(99 153)(100 154)(101 155)(102 156)(103 157)(104 158)(105 159)(106 160)(107 161)(108 162)(109 163)(110 164)(111 165)(112 166)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 70 219 152)(2 97 220 123)(3 68 221 150)(4 95 222 121)(5 66 223 148)(6 93 224 119)(7 64 169 146)(8 91 170 117)(9 62 171 144)(10 89 172 115)(11 60 173 142)(12 87 174 113)(13 58 175 140)(14 85 176 167)(15 112 177 138)(16 83 178 165)(17 110 179 136)(18 81 180 163)(19 108 181 134)(20 79 182 161)(21 106 183 132)(22 77 184 159)(23 104 185 130)(24 75 186 157)(25 102 187 128)(26 73 188 155)(27 100 189 126)(28 71 190 153)(29 98 191 124)(30 69 192 151)(31 96 193 122)(32 67 194 149)(33 94 195 120)(34 65 196 147)(35 92 197 118)(36 63 198 145)(37 90 199 116)(38 61 200 143)(39 88 201 114)(40 59 202 141)(41 86 203 168)(42 57 204 139)(43 84 205 166)(44 111 206 137)(45 82 207 164)(46 109 208 135)(47 80 209 162)(48 107 210 133)(49 78 211 160)(50 105 212 131)(51 76 213 158)(52 103 214 129)(53 74 215 156)(54 101 216 127)(55 72 217 154)(56 99 218 125)

G:=sub<Sym(224)| (1,191)(2,192)(3,193)(4,194)(5,195)(6,196)(7,197)(8,198)(9,199)(10,200)(11,201)(12,202)(13,203)(14,204)(15,205)(16,206)(17,207)(18,208)(19,209)(20,210)(21,211)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,218)(29,219)(30,220)(31,221)(32,222)(33,223)(34,224)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,187)(54,188)(55,189)(56,190)(57,139)(58,140)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138), (1,191)(2,192)(3,193)(4,194)(5,195)(6,196)(7,197)(8,198)(9,199)(10,200)(11,201)(12,202)(13,203)(14,204)(15,205)(16,206)(17,207)(18,208)(19,209)(20,210)(21,211)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,218)(29,219)(30,220)(31,221)(32,222)(33,223)(34,224)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,187)(54,188)(55,189)(56,190)(57,167)(58,168)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,161)(108,162)(109,163)(110,164)(111,165)(112,166), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,70,219,152)(2,97,220,123)(3,68,221,150)(4,95,222,121)(5,66,223,148)(6,93,224,119)(7,64,169,146)(8,91,170,117)(9,62,171,144)(10,89,172,115)(11,60,173,142)(12,87,174,113)(13,58,175,140)(14,85,176,167)(15,112,177,138)(16,83,178,165)(17,110,179,136)(18,81,180,163)(19,108,181,134)(20,79,182,161)(21,106,183,132)(22,77,184,159)(23,104,185,130)(24,75,186,157)(25,102,187,128)(26,73,188,155)(27,100,189,126)(28,71,190,153)(29,98,191,124)(30,69,192,151)(31,96,193,122)(32,67,194,149)(33,94,195,120)(34,65,196,147)(35,92,197,118)(36,63,198,145)(37,90,199,116)(38,61,200,143)(39,88,201,114)(40,59,202,141)(41,86,203,168)(42,57,204,139)(43,84,205,166)(44,111,206,137)(45,82,207,164)(46,109,208,135)(47,80,209,162)(48,107,210,133)(49,78,211,160)(50,105,212,131)(51,76,213,158)(52,103,214,129)(53,74,215,156)(54,101,216,127)(55,72,217,154)(56,99,218,125)>;

G:=Group( (1,191)(2,192)(3,193)(4,194)(5,195)(6,196)(7,197)(8,198)(9,199)(10,200)(11,201)(12,202)(13,203)(14,204)(15,205)(16,206)(17,207)(18,208)(19,209)(20,210)(21,211)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,218)(29,219)(30,220)(31,221)(32,222)(33,223)(34,224)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,187)(54,188)(55,189)(56,190)(57,139)(58,140)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(85,167)(86,168)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138), (1,191)(2,192)(3,193)(4,194)(5,195)(6,196)(7,197)(8,198)(9,199)(10,200)(11,201)(12,202)(13,203)(14,204)(15,205)(16,206)(17,207)(18,208)(19,209)(20,210)(21,211)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,218)(29,219)(30,220)(31,221)(32,222)(33,223)(34,224)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,187)(54,188)(55,189)(56,190)(57,167)(58,168)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,161)(108,162)(109,163)(110,164)(111,165)(112,166), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,70,219,152)(2,97,220,123)(3,68,221,150)(4,95,222,121)(5,66,223,148)(6,93,224,119)(7,64,169,146)(8,91,170,117)(9,62,171,144)(10,89,172,115)(11,60,173,142)(12,87,174,113)(13,58,175,140)(14,85,176,167)(15,112,177,138)(16,83,178,165)(17,110,179,136)(18,81,180,163)(19,108,181,134)(20,79,182,161)(21,106,183,132)(22,77,184,159)(23,104,185,130)(24,75,186,157)(25,102,187,128)(26,73,188,155)(27,100,189,126)(28,71,190,153)(29,98,191,124)(30,69,192,151)(31,96,193,122)(32,67,194,149)(33,94,195,120)(34,65,196,147)(35,92,197,118)(36,63,198,145)(37,90,199,116)(38,61,200,143)(39,88,201,114)(40,59,202,141)(41,86,203,168)(42,57,204,139)(43,84,205,166)(44,111,206,137)(45,82,207,164)(46,109,208,135)(47,80,209,162)(48,107,210,133)(49,78,211,160)(50,105,212,131)(51,76,213,158)(52,103,214,129)(53,74,215,156)(54,101,216,127)(55,72,217,154)(56,99,218,125) );

G=PermutationGroup([[(1,191),(2,192),(3,193),(4,194),(5,195),(6,196),(7,197),(8,198),(9,199),(10,200),(11,201),(12,202),(13,203),(14,204),(15,205),(16,206),(17,207),(18,208),(19,209),(20,210),(21,211),(22,212),(23,213),(24,214),(25,215),(26,216),(27,217),(28,218),(29,219),(30,220),(31,221),(32,222),(33,223),(34,224),(35,169),(36,170),(37,171),(38,172),(39,173),(40,174),(41,175),(42,176),(43,177),(44,178),(45,179),(46,180),(47,181),(48,182),(49,183),(50,184),(51,185),(52,186),(53,187),(54,188),(55,189),(56,190),(57,139),(58,140),(59,141),(60,142),(61,143),(62,144),(63,145),(64,146),(65,147),(66,148),(67,149),(68,150),(69,151),(70,152),(71,153),(72,154),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,161),(80,162),(81,163),(82,164),(83,165),(84,166),(85,167),(86,168),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,121),(96,122),(97,123),(98,124),(99,125),(100,126),(101,127),(102,128),(103,129),(104,130),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138)], [(1,191),(2,192),(3,193),(4,194),(5,195),(6,196),(7,197),(8,198),(9,199),(10,200),(11,201),(12,202),(13,203),(14,204),(15,205),(16,206),(17,207),(18,208),(19,209),(20,210),(21,211),(22,212),(23,213),(24,214),(25,215),(26,216),(27,217),(28,218),(29,219),(30,220),(31,221),(32,222),(33,223),(34,224),(35,169),(36,170),(37,171),(38,172),(39,173),(40,174),(41,175),(42,176),(43,177),(44,178),(45,179),(46,180),(47,181),(48,182),(49,183),(50,184),(51,185),(52,186),(53,187),(54,188),(55,189),(56,190),(57,167),(58,168),(59,113),(60,114),(61,115),(62,116),(63,117),(64,118),(65,119),(66,120),(67,121),(68,122),(69,123),(70,124),(71,125),(72,126),(73,127),(74,128),(75,129),(76,130),(77,131),(78,132),(79,133),(80,134),(81,135),(82,136),(83,137),(84,138),(85,139),(86,140),(87,141),(88,142),(89,143),(90,144),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(97,151),(98,152),(99,153),(100,154),(101,155),(102,156),(103,157),(104,158),(105,159),(106,160),(107,161),(108,162),(109,163),(110,164),(111,165),(112,166)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,70,219,152),(2,97,220,123),(3,68,221,150),(4,95,222,121),(5,66,223,148),(6,93,224,119),(7,64,169,146),(8,91,170,117),(9,62,171,144),(10,89,172,115),(11,60,173,142),(12,87,174,113),(13,58,175,140),(14,85,176,167),(15,112,177,138),(16,83,178,165),(17,110,179,136),(18,81,180,163),(19,108,181,134),(20,79,182,161),(21,106,183,132),(22,77,184,159),(23,104,185,130),(24,75,186,157),(25,102,187,128),(26,73,188,155),(27,100,189,126),(28,71,190,153),(29,98,191,124),(30,69,192,151),(31,96,193,122),(32,67,194,149),(33,94,195,120),(34,65,196,147),(35,92,197,118),(36,63,198,145),(37,90,199,116),(38,61,200,143),(39,88,201,114),(40,59,202,141),(41,86,203,168),(42,57,204,139),(43,84,205,166),(44,111,206,137),(45,82,207,164),(46,109,208,135),(47,80,209,162),(48,107,210,133),(49,78,211,160),(50,105,212,131),(51,76,213,158),(52,103,214,129),(53,74,215,156),(54,101,216,127),(55,72,217,154),(56,99,218,125)]])

124 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N7A7B7C8A···8H14A···14U28A···28X56A···56AV
order1222224444444···47778···814···1428···2856···56
size11112211112228···282222···22···22···22···2

124 irreducible representations

dim111111222222222222
type++++++-++-++-++
imageC1C2C2C2C2C4D4Q8D4D7Dic7D14D14C4○D8Dic14D28D28D567C2
kernelC23.22D28C8⋊Dic7C561C4C23.21D14C22×C56C2×C56C2×C28C2×C28C22×C14C22×C8C2×C8C2×C8C22×C4C14C2×C4C2×C4C23C2
# reps122218121312638126648

Matrix representation of C23.22D28 in GL3(𝔽113) generated by

100
010
00112
,
11200
010
001
,
100
01120
00112
,
100
0130
0026
,
9800
0026
0130
G:=sub<GL(3,GF(113))| [1,0,0,0,1,0,0,0,112],[112,0,0,0,1,0,0,0,1],[1,0,0,0,112,0,0,0,112],[1,0,0,0,13,0,0,0,26],[98,0,0,0,0,13,0,26,0] >;

C23.22D28 in GAP, Magma, Sage, TeX

C_2^3._{22}D_{28}
% in TeX

G:=Group("C2^3.22D28");
// GroupNames label

G:=SmallGroup(448,640);
// by ID

G=gap.SmallGroup(448,640);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,232,422,100,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^27>;
// generators/relations

׿
×
𝔽